
Suites et séries d’intégrales

Plan du chapitre

I - Suites d’intégrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 3
II - Séries d’intégrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .page 5

c© Jean-Louis Rouget, 2017. Tous droits réservés. 1 http ://www.maths-france.fr



Nous allons fournir dans ce chapitre un certain nombre de théorèmes dont la conclusion est à chaque fois

lim
n→+∞

(∫

I

fn(x) dx

)

=

∫

I

(

lim
n→+∞

fn(x)

)

dx.

Commençons par rappeler que cette égalité n’a rien d’automatique et peut être fausse. Le contre-exemple usuel de cours

est le suivant : pour n > 2 et x ∈ [0, 1], posons fn(x) =






n2x si x ∈
[

0,
1

n

]

−n2

(

x−
2

n

)

si x ∈
[

1

n
,
2

n

]

0 si x ∈
[

2

n
, 1

]

.

1

2

3

4

5

1
1
5

1
4

1
3

Pour tout entier naturel non nul n,

∫1

0

fn(x) dx est l’aire d’un triangle de base
2

n
et de hauteur n. Donc, pour tout entier

naturel non nul n,

∫1

0

fn(x) dx = 1 et la suite

(∫1

0

fn(x) dx

)

n∈N∗

converge vers 1.

Mais, la suite de fonctions (fn)n∈N∗ converge simplement vers la fonction nulle sur [0, 1] car pour tout n > 1, fn(0) = 0 puis

fn(0) →
n→+∞

0 et si x0 ∈]0, 1], pour n >
2

x0
, fn (x0) = 0 et de nouveau fn (x0) →

n→+∞

0. Donc,

∫1

0

(

lim
n→+∞

fn(x)

)

dx = 0.

Ainsi, ici, nous sommes dans la situation où

lim
n→+∞

(∫

I

fn(x) dx

)

6=
∫

I

(

lim
n→+∞

fn(x)

)

dx.
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I - Suites d’intégrales
Commençons par rappeler un théorème énoncé et démontré dans le chapitre « Suites et séries de fonctions ».

Théorème 1.

Soit (fn)n∈N
une suite de fonctions définies et continues sur un segment [a, b] de R à valeurs dans K = R ou C. Soit

f une fonction définie sur [a, b] à valeurs dans K.

On suppose que la suite de fonctions (fn)n∈N
converge uniformément sur [a, b] vers la fonction f.

Alors,
• la fonction f est continue sur [a, b] ;

• la suite numérique

(∫b

a

fn(x) dx

)

n∈N

converge ;

• lim
n→+∞

(∫b

a

fn(x) dx

)

=

∫b

a

f(x) dx ou encore, plus explicitement

lim
n→+∞

(∫b

a

fn(x) dx

)

=

∫b

a

(

lim
n→+∞

fn(x)

)

dx.

Commentaire. On rappelle aussi que ce théorème s’avère être de portée assez réduite car des exemples comme

lim
n→+∞

∫1

0

xn dx = 0 ou lim
n→+∞

∫π/2

0

sinn x dx = 0 échappent à ce théorème.

• Pour x ∈ [0, 1], posons fn(x) = xn. Pour x ∈ [0, 1], fn(x) →
n→+∞

{
1 si x = 1

0 si x ∈ [0, 1[
= f(x) et puisque la fonction f n’est pas

continue sur [0, 1] alors que chaque fonction fn, n ∈ N, l’est, la suite de fonctions (fn)n∈N
converge simplement sur [0, 1]

vers la fonction f mais ne converge pas uniformément vers la fonction f sur ce segment. On ne peut donc pas appliquer le
théorème 1. Par contre, la limite de la suite d’intégrales se calcule directement.

∫1

0

xn dx =
1

n+ 1
→

n→+∞

0.

• Pour x ∈
[

0,
π

2

]

, posons fn(x) = sinn x. Pour x ∈ [0, 1], fn(x) →
n→+∞

{
1 si x = π/2

0 si x ∈
[

0,
π

2

[

= f(x). De nouveau, la suite de

fonctions (fn)n∈N
converge simplement sur

[

0,
π

2

]

vers la fonction f mais ne converge pas uniformément vers la fonction f

sur ce segment. On ne peut toujours pas appliquer le théorème 1. Montrer directement que lim
n→+∞

∫π/2

0

sinn x dx = 0 est

un peu plus délicat :

Soit a ∈
]

0,
π

2

[

. Pour n ∈ N∗,

∫π/2

0

sinn x dx =

∫π/2−a

0

sinn x dx+

∫π/2

π/2−a

sinn x dx 6

(π

2
− a

)

sinn
(π

2
− a

)

+ a × 1 6
π

2
sinn

(π

2
− a

)

+ a.

Soit ε > 0. On choisit a = Min
{ε

2
,
π

4

}
de sorte que

π

2
− a ∈

]

0,
π

2

[

et a 6
ε

2
. On obtient

∀n ∈ N, 0 6

∫π/2

0

sinn x dx 6
π

2
sinn

(π

2
− a

)

+
ε

2
.

Puisque a ∈
]

0,
π

2

[

, on a 0 < sin
(π

2
− a

)

< 1. Par suite, lim
n→+∞

π

2
sinn

(π

2
− a

)

= 0 et donc, il existe n0 ∈ N tel que pour

n > n0,
π

2
sinn

(π

2
− a

)

6
ε

2
. Pour n > n0, on a alors 0 6

∫π/2

0

sinn x dx 6
ε

2
+

ε

2
= ε.

Ainsi, ∀ε > 0, ∃n0 ∈ N/ ∀n ∈ N,

(

n > n0 ⇒ 0 6

∫π/2

0

sinn x dx 6 ε

)

et donc lim
n→+∞

∫π/2

0

sinn x dx = 0. ❏

Le théorème 1 utilise la convergence uniforme sur un segment. Si on n’est plus sur un segment (par exemple, pour

In =

∫1

0

1√
1− tn

dt où l’intervalle d’intégration est [0, 1[ ou bien, pour In =

∫+∞

0

1

(1+ t2)n
dt où l’intervalle d’intégration

est [0,+∞[) ou si on n’a plus la convergence uniforme, le théorème 1 ne sert plus à rien. On dispose alors du théorème
suivant, appelé « théorème de convergence dominée », et qui est admis dans le cadre du programme officiel de maths spé.
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Théorème 2. (théorème de convergence dominée)

Soit (fn)n∈N
une suite de fonctions définies et continues par morceaux sur un intervalle I de R à valeurs dans K = R

ou C. Soit f une fonction définie sur I à valeurs dans K.

On suppose que
• la suite de fonctions (fn)n∈N

converge simplement sur I vers la fonction f ;
• la fonction f est continue par morceaux sur I ;
• il existe une fonction ϕ continue par morceaux et intégrable sur I telle que ∀n ∈ N, |fn| 6 ϕ (hypothèse
de domination) ;

Alors,
• chaque fonction fn est intégrable sur I ;

• la suite numérique

(∫

I

fn(x) dx

)

n∈N

converge ;

• la fonction f est intégrable sur I ;

• lim
n→+∞

(∫

I

fn(x) dx

)

=

∫

I

f(x) dx ou encore, plus explicitement

lim
n→+∞

(∫

I

fn(x) dx

)

=

∫

I

(

lim
n→+∞

fn(x)

)

dx.

Commentaire. Le théorème précédent est valable sur un intervalle quelconque, intervalle qui a donc le droit d’être
un segment ou pas. Dans ce théorème, on doit d’abord noter que l’hypothèse de convergence uniforme a disparu. Une
conséquence est que, bien que les fonctions fn soient supposées continues sur l’intervalle I, la fonction limite f n’a plus
aucune raison d’être continue par morceaux sur I. On doit donc vérifier que f est continue par morceaux sur I ce qui
suppose la plupart du temps que l’on connaît explicitement la fonction f.

L’hypothèse de convergence uniforme est remplacée par une autre hypothèse, l’« hypothèse de domination ». Il s’agit de
fournir une fonction ϕ (continue par morceaux et intégrable sur I) majorant toutes les fonctions fn. Ceci signifie que l’on
doit majorer chaque |fn(x)| par une expression dépendante de x et indépendante de n et qui soit une fonction de x

intégrable sur I. ❏

Exemple 1. Revenons aux intégrales de Wallis : ∀n ∈ N, Wn =

∫π/2

0

sinx dx. Pour x ∈
[

0,
π

2

]

, posons fn(x) = sinn x.

Chaque fonction fn, n ∈ N, est continue sur
[

0,
π

2

]

et la suite de fonctions (fn)n∈N
converge simplement sur

[

0,
π

2

]

vers

la fonction f : x 7→






0 si x ∈
[

0,
π

2

[

1 si x =
π

2

où de plus, la fonction f est continue par morceaux sur
[

0,
π

2

]

.

Enfin, pour tout entier naturel n et tout réel x de
[

0,
π

2

]

, |fn(x)| 6 1 = ϕ(x) où ϕ est une fonction continue par morceaux

et intégrable sur le segment
[

0,
π

2

]

. D’après le théorème de convergence dominée, la suite (Wn)n∈N
converge et

lim
n→+∞

Wn =

∫π/2

0

f(x) dx = 0.

Exemple 2. Pour n ∈ N∗, posons In =

∫+∞

0

1

(t2 + 1)
n dt. Pour n ∈ N∗ et t ∈ [0,+∞[, posons fn(t) =

1

(t2 + 1)
n de sorte

que In =

∫+∞

0

fn(t) dt.

Chaque fonction fn, n ∈ N∗, est continue sur [0,+∞[ et la suite de fonctions (fn)n∈N∗ converge simplement sur [0,+∞[

vers la fonction f : t 7→
{

0 si t ∈ ]0,+∞[

1 si t = 0
où de plus, la fonction f est continue par morceaux sur [0,+∞[.

Enfin, pour tout entier naturel n et tout réel t de [0,+∞[, |fn(t)| 6
1

1+ t2
= ϕ(t) où ϕ est une fonction continue par

morceaux et intégrable sur [0,+∞[ car positive et équivalente à
1

t2
en +∞. D’après le théorème de convergence dominée,

la suite (In)n∈N
converge et lim

n→+∞

In = 0. ❏
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Exercice 1. (un calcul de l’intégrale de Gauss : I =

∫+∞

0

e−x2

dx)

Dans cet exercice, on suppose acquis un résultat classique sur les intégrales de Wallis : si Wn =

∫π/2

0

sinn x dx, alors

Wn ∼
n→+∞

√

π

2n
.

1) Justifier l’existence de I.

2) Pour n ∈ N
∗ et x ∈ [0,+∞[, on pose fn(x) =






(

1−
x

n

)n

si x ∈ [0, n[

0 si x ∈ [n,+∞[

. Montrer que pour tout n ∈ N
∗ et

t ∈ [0,+∞[, fn(x) 6 e−x.

3) En déduire que I = lim
n→+∞

∫√n

0

(

1−
x2

n

)

dx.

4) A l’aide du résultat sur les intégrales de Wallis, en déduire la valeur de I.

Solution 1.

1) La fonction g : x 7→ e−x2

est continue sur [0,+∞[ et négligeable en +∞ devant
1

x2
. On en déduit que la fonction f

est intégrable sur [0,+∞[ puis que I existe.

2) Soient n ∈ N
∗ puis x ∈ [0,+∞[.

• si x ∈ [n,+∞[, fn(x) = 0 6 e−x.

• si x ∈ [0, n[, alors
x

n
∈ [0, 1[. On sait que pour t ∈ [0, 1[, ln(1 − t) 6 −t (inégalité de convexité) et donc

ln
(

1−
x

n

)

6 −
x

n
puis n ln

(

1−
x

n

)

6 −x et enfin, fn(x) = en ln(1− x

n ) 6 e−x par croissance de la fonction exponentielle

sur R.

On a montré que ∀n ∈ N∗, ∀x ∈ [0,+∞[, fn(x) 6 e−x.

3) Pour n ∈ N
∗ et x ∈ [0,+∞[, posons gn(x) = fn

(

x2
)

=






(

1−
x2

n

)n

si x ∈
[

0,
√
n
[

0 si x ∈
[√

n,+∞
[

.

• chaque fonction gn, n ∈ N∗, est continue par morceaux sur [0,+∞[.

• soit x ∈ [0,+∞[. Pour n > x2, gn(x) = e
n ln

(

1−x
2

n

)

et donc

gn(x) =
n→+∞

e
n
(

−x
2

n
+o( 1

n )
)

= e−x2+o(1).

Donc, la suite de fonctions (gn)n∈N∗ converge simplement vers la fonction g sur [0,+∞[ et de plus, la fonction g est
continue par morceaux sur [0,+∞[.

• Enfin, pour tout n ∈ N∗ et tout x ∈ [0,+∞[, gn(x) = fn
(

x2
)

6 e−x2

= ϕ(x) (d’après la question précédente) où ϕ = g

est une fonction continue par morceaux et intégrable sur [0,+∞[ (d’après 1)).

D’après le théorème de convergence dominée, la suite

(∫+∞

0

gn(x) dx

)

n∈N∗

converge et

I =

∫+∞

0

g(x) dx = lim
n→+∞

∫+∞

0

gn(x) dx = lim
n→+∞

∫√n

0

(

1−
x2

n

)n

dx.

4) Soit n ∈ N∗. En posant x =
√
n cos t, on obtient

∫√n

0

(

1−
x2

n

)n

dx =

∫0

π/2

(

1− cos2 t
)n

(−
√
n sin t) dt =

√
n

∫π/2

0

sin2n+1 dt =
√
nW2n+1.

Par suite,

∫√n

0

(

1−
x2

n

)n

dx ∼
n→+∞

√
n

√

π

2(2n + 1)
∼

n→+∞

√
π

2
.
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On a montré que

∫+∞

0

e−x2

dx =

√
π

2
.

II - Séries d’intégrales
On rappelle aussi le théorème d’intégration terme à terme sur un segment qui n’est qu’une traduction du théorème 1 sur
les suites de fonctions en terme de séries.

Théorème 3. (théorème d’intégration terme à terme sur un segment)

Soit (fn)n∈N
une suite de fonctions définies et continues par morceaux sur un segment [a, b] de R à valeurs dans

K = R ou C. Soit f une fonction définie sur [a, b] à valeurs dans K.

On suppose que la série de fonctions de terme général fn converge uniformément sur [a, b] vers la fonction f.

Alors,
• la fonction f est continue sur [a, b] ;

• la série numérique de terme général

∫b

a

fn(x) dx converge ;

•
+∞∑

n=0

(∫b

a

fn(x) dx

)

=

∫b

a

f(x) dx ou encore, plus explicitement

+∞∑

n=0

(∫b

a

fn(x) dx

)

=

∫b

a

(

+∞∑

n=0

fn(x)

)

dx.

Exercice 2.

1) Soit x ∈] − 1, 1[. Calculer

∫π/2

0

1

1− x cos t
dt en posant u = tan

(

t

2

)

.

2) Pour n ∈ N, on pose Wn =

∫π/2

0

cosn t dt. Calculer

+∞∑

n=0

Wnx
n pour x ∈] − 1, 1[.

Solution 2.

1) Soit x ∈]−1, 1[. Pour tout réel t ∈
[

0,
π

2

]

, |x cos t| 6 |x| < 1 et en particulier, 1−x cos t 6= 0. La fonction t 7→ 1

1− x cos t

est donc continue sur le segment
[

0,
π

2

]

. On en déduit que la fonction t 7→ 1

1− x cos t
est donc intégrable sur le segment

[

0,
π

2

]

.

On pose u = tan

(

t

2

)

de sorte que cos t =
1− u2

1+ u2
et dt =

2du

1+ u2
. On obtient

∫π/2

0

1

1− x cos t
dt =

∫1

0

1

1− x
1− u2

1+ u2

2du

1+ u2
=

∫1

0

2

(1 + x)u2 + (1 − x)
du

=
2

1+ x

∫1

0

2

u2 +

(

√

1− x

1+ x

)2
du =

2

1+ x









1
√

1− x

1+ x

Arctan









u
√

1− x

1+ x

















1

0

=
2√

1− x2
Arctan

(

√

1+ x

1− x

)

.

2) Soit x ∈]−1, 1[. Pour n ∈ N et t ∈
[

0,
π

2

]

, posons fn(t) = (x cos t)n. Pour tout réel t ∈
[

0,
π

2

]

, on a |x cos t| 6 |x| < 1 et

donc la série numérique de terme général fn(t), n ∈ N, converge. Ainsi, la série de fonctions de terme général fn, n ∈ N,

converge simplement sur
[

0,
π

2

]

vers la fonction f : t 7→
+∞∑

n=0

(x cos t)n =
1

1− x cos t
.
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Soit n ∈ N. Pour tout réel t ∈
[

0,
π

2

]

, |fn(t)| = |x|n| sin t|n 6 |x|n où |x|n est le terme général d’une série numérique

convergente. Donc, la série de fonctions de terme général fn, n ∈ N, converge normalement et en particulier uniformément

sur le segment
[

0,
π

2

]

vers la fonction f.

D’après le théorème d’intégration terme à terme sur un segment,

• la fonction f est continue sur
[

0,
π

2

]

,

• la série numérique de terme général

∫π/2

0

fn(t) dt = Wnx
n, n ∈ N, converge,

• et on a :

+∞∑

n=0

Wnx
n =

+∞∑

n=0

∫π/2

0

fn(t) dt =

∫π/2

0

(

+∞∑

n=0

fn(t)

)

dt

=

∫π/2

0

1

1− x cos t
dt =

2√
1− x2

Arctan

(

√

1+ x

1− x

)

.

Comme pour les suites de fonctions, si on n’est plus sur un segment, la convergence uniforme ne sert plus à rien. On
dispose alors du théorème suivant, très utilisé dans la pratique. Ce théorème est admis dans le cadre du programme officiel
de maths spé.

Théorème 4. (théorème d’intégration terme à terme)

Soit (fn)n∈N
une suite de fonctions définies et continues par morceaux sur un intervalle I de R à valeurs dans K = R

ou C. Soit f une fonction définie sur I à valeurs dans K.

On suppose que
• la série de fonctions de terme général fn converge simplement sur I vers la fonction f ;
• la fonction f est continue par morceaux sur I ;

•
+∞∑

n=0

∫

I

|fn(x)|dx < +∞ ;

Alors,
• la fonction f est intégrable sur I ;

• la série numérique de terme général

∫

I

fn(x) dx converge ;

•
+∞∑

n=0

(∫

I

fn(x) dx

)

=

∫

I

f(x) dx ou encore, plus explicitement

+∞∑

n=0

(∫

I

fn(x) dx

)

=

∫

I

(

+∞∑

n=0

fn(x)

)

dx.

Exercice 3.

Montrer que

∫+∞

0

x2

ex − 1
dx = 2

+∞∑

n=1

1

n3
.

(Dans cet exercice, on supposera connu le résultat classique : ∀n ∈ N, Γ(n + 1) =

∫+∞

0

tne−t dt = n!).

Solution 3.

• Pour x > 0, posons f(x) =
x2

ex − 1
. f est continue sur ]0,+∞[.

• Soit x ∈]0,+∞[. Alors 0 < e−x < 1 et donc

f(x) =
x2

ex (1− e−x)
= x2e−x

+∞∑

n=0

e−nx =

+∞∑

n=0

x2e−(n+1)x.

Pour n ∈ N et x ∈]0,+∞[, posons fn(x) = x2e−(n+1)x. Chaque fonction fn, n ∈ N, est continue par morceaux sur ]0,+∞[

et la série de fonctions de terme général fn, n ∈ N, converge simplement vers la fonction f sur ]0,+∞[.

c© Jean-Louis Rouget, 2017. Tous droits réservés. 7 http ://www.maths-france.fr



• Pour n ∈ N, posons In =

∫+∞

0

|fn(x)|dx. Soit n ∈ N. En posant t = (n+ 1)x, on obtient

In =

∫+∞

0

|fn(x)|dx =

∫+∞

0

fn(x) dx =

∫+∞

0

x2e−(n+1)x dx =

∫+∞

0

(

t

n + 1

)2

e−t dt

n + 1

=
1

(n + 1)3

∫+∞

0

t2e−t dt =
Γ(2)

(n + 1)3
=

2

(n + 1)3
.

Puisque In ∼
n→+∞

2

n3
> 0, la série de terme général In converge.

D’après le théorème d’intégration terme à terme, la fonction f est intégrable sur ]0,+∞[ et

∫+∞

0

x2

ex − 1
dx =

∫+∞

0

f(x) dx =

∫+∞

0

(

+∞∑

n=0

fn(x)

)

dx

=

+∞∑

n=0

∫+∞

0

fn(x) dx =

+∞∑

n=0

2

(n + 1)3

= 2

+∞∑

n=1

1

n3
.

Sinon, on dispose aussi du théorème de convergence dominée pour les séries de fonctions. Dans la pratique, il est peu
utilisé (contrairement au cas des suites de fonctions) et c’est le théorème 4 qui est l’outil principal dans la plupart des cas.

Théorème 5. (théorème de convergence dominée pour les séries de fonctions)

Soit (fn)n∈N
une suite de fonctions définies et continues par morceaux sur un intervalle I de R à valeurs dans K = R

ou C. Soit f une fonction définie sur I à valeurs dans K.

On suppose que
• la série de fonctions de terme général fn converge simplement sur I vers la fonction f ;
• la fonction f est continue par morceaux sur I ;

• il existe une fonction ϕ continue par morceaux et intégrable sur I telle que ∀n ∈ N,

∣

∣

∣

∣

∣

n∑

k=0

fk

∣

∣

∣

∣

∣

6 ϕ

(hypothèse de domination) ;

Alors,
• chaque fonction fn est intégrable sur I ;

• la série numérique de terme général

∫

I

fn(x) dx, n ∈ N, converge ;

• la fonction f est intégrable sur I ;

•
+∞∑

n=0

∫

I

fn(x) dx =

∫

I

(

+∞∑

n=0

fn(x)

)

dx.
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