

TD T3 – DEUXIÈME PRINCIPE DE LA THERMODYNAMIQUE

D.Malka – MPSI 2016-2017 – Lycée Saint-Exupéry

T1-Calorimétrie et entropie

On considère un bloc de fer de masse $m=250\,g$ à la température $\theta_{fer}=90\,^{\circ}C$ que l'on plonge dans un calorimètre de capacité thermique $C=85\,J.K^{-1}$ rempli d'un volume $V=200\,mL$ d'eau froide à $\theta_{eau}=18^{\circ}C$. Le calorimètre est supposé parfaitement adiabatique et indéformable. On donne $c_{eau} = 4,18 \, kJ.kg^{-1}.K^{-1}$ et $C_{Fe} = 3nR$ avec $R = 8,314 \, J.K^{-1}.mol^{-1}$.

- 1. Calculer la température du système {calorimètre + fer + eau} à l'équilibre.
- 2. Déterminer l'entropie créée au cours de la transformation.

T2-Refroidissement infiniment lent

On désire à présent refroidir progressivement un solide, de capacité C, de la température T_0 à la température $T_f < T_0$. Pour réaliser cette transformation, le solide est mis successivement en contact avec N thermostats de températures T_k (Fig.1) en progression arithmétique :

$$T_k = T_0 + k \frac{T_f - T_0}{N} \text{ avec } k \in \mathbb{N}$$

- 1. Déterminer l'entropie créée S_c^k au cours du $k^{i\`{e}me}$ contact thermique, correspondant au passage du solide de la température T_{k-1} à T_k , en fonction de C, T_{k-1} et T_k .
- 2. On pose $\varepsilon_k = \frac{T_k T_{k-1}}{T_k}$. Donner une expression approchée de S_c^k dans l'hypothèse $\varepsilon_k \ll 1$ en fonction de T_k , T_{k-1} et C. Aide : pousser le développement limité en ε_k à l'ordre 2.
- 3. Exprimer l'entropie créée S_c à l'issue des N contacts en utilisant une somme sur k. Quel résultat obtient-on en faisant tendre N vers l'infini? Commenter.

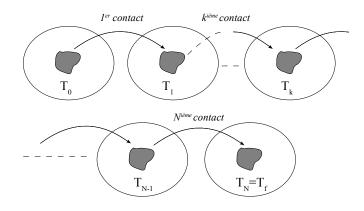


FIGURE 1 – Solide en contact successifs avec les thermostat

T3-Détente adiabatique de l'ammoniac

On fait subir à l'ammoniac une détente adiabatique de l'état liquide L ($P_2 =$ $6,2\,bar,\,T_2=283\,K)$ à l'état diphasé $M\,(P_1=1,9\,bar,\,T_1=253\,K)$ de titre massique en vapeur $x_M = 0,69$. (voir fig.2).

On donne:

- l'enthalpie de vaporisation $\Delta_{vap}h(T_1) = 1, 3.10^3 \, kJ.kg^{-1}$. la capacité thermique $c = 4, 6 \, kJ.K^{-1}.kg^{-1}$ de l'ammoniac liquide.
- 1. Justifier qu'on peut calculer la variation d'enthalpie massique Δh et la variation d'entropie massique Δs de l'ammoniac entre L et M en raisonnant sur la transformation fictive (LAM) plutôt que sur la transformation réelle (LM).

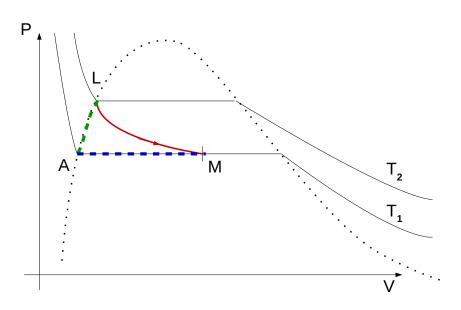


FIGURE 2 – Détente et liquéfaction partielle de l'ammoniac

- 2. Calculer la variation d'enthalpie massique de l'ammoniac au cours de la transformation.
- 3. Calculer la variation d'entropie massique de l'ammoniac au cours de la transformation.