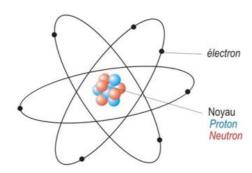
Chimie - Chapitre 1 : L'atome


Ce qu'il faut retenir...

Unités :

- 1 mol = N_A entités = 6,022. 10^{23} entités (ions, atomes, molécules...) = nombre d'atomes dans 12 q de carbone 12. N_A : nombre d'Avogadro
- 1 uma= $1/N_A g$, = 1/12 de la masse d'un atome de carbone 12.

MODELE PLANETAIRE DE RUTHERFORD :

Un atome est constitué d'un noyau chargé positivement, contenant l'essentiel de la masse de l'atome, et d'électrons chargés négativement gravitant autour du noyau.

Notation: ${}_{Z}^{A}X$ (exemple: atome de carbone 12, ${}_{6}^{12}C$)

<u>Isotopes</u> = atomes ayant même nombre de protons (même Z)

Exemple: ${}_{6}^{12}C$ et ${}_{6}^{14}C$

	Noyau 15		Autour du noyau
	Rayon ≈ 10 ⁻¹⁵ m		Rayon atomique ≈ 10 ⁻¹⁰ m
Particules	Nucléons		Electrons
	Protons	Neutrons	
Masse	$\approx 10^{-27} \text{ kg} \approx 1 \text{ uma}$	$\approx 10^{-27} \text{ kg} \approx 1 \text{ uma}$	≈ 10 ⁻³⁰ kg
Charge	e = 1,602.10 ⁻¹⁹ C	0 <i>C</i>	-e = -1,602.10 ⁻¹⁹ C
Nombre	A: Nombre de masse A ≈ masse d'un atome en uma A ≈ masse molaire en g.mol ⁻¹ Z: Numéro atomique		Z si l'atome est neutre
	Il caractérise l'élément chimique auquel appartient l'atome.	A - Z	Z - charge de l'atome si l'atome est chargé
Forces mises en jeu	La cohésion du noyau est assurée par l'interaction forte		Force électrostatique s'exerçant entre particules chargées

MODELE QUANTIQUE :

Il faut abandonner la notion de trajectoire et raisonner en probabilité de présence.

Les électrons occupent de manière probabiliste certaines régions de l'espace autour du noyau.

On appelle **orbitale atomique** une zone de l'espace où la probabilité de trouver un électron autour du noyau est forte.

Les nombres quantiques : Pour décrire un électron il faut 4 nombres quantiques.

	n	I	m _l	m _s
Nom	Nombre quantique principal	Nombre quantique secondaire	Nombre quantique magnétique	Nombre quantique de spin
Valeurs	n ∈ N [*]	I ∈ N Pour une valeur de n: O ≤ I ≤ n-1 (n valeurs)	m₁ ∈ Z Pour un une valeur de l : - I ≤ m₁ ≤ I (2l+1 valeurs)	$+\frac{1}{2}$ ou $-\frac{1}{2}$
	Définit une couche Traduit l'éloignement de l'électron par rapport au noyau.	Définit une sous couche 0 ↔ s 1 ↔ p 2 ↔ d 3 ↔ f Chaque couche n contient n sous-couches. Définit la forme et la symétrie de l'orbitale.	Le nombre de valeurs prises détermine le nombre d'orbitales dans la sous couche correspondante.	Propriété intrinsèque de l'électron liée à « sa rotation sur lui-même ».
	Un triplet (n, l, m_l) définit une orbitale atomique.			

<u>Règles de remplissage</u>: pour établir la configuration électronique d'un atome dans son état fondamental.

Principe de stabilité: On remplit les sous-couches par ordre d'énergie croissante selon la règle de Klechkowski.

Energie des orbitales atomiques : règle de Klechkowski

En l'absence de perturbations extérieures, l'énergie d'une sous couche (n,l) est une fonction croissante de n+l, pour 2 valeurs identiques de n+l, elle est une fonction croissant de n.

```
1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f ...
6s 6p 6d ... ... ..
```

Pour chaque sous couche (n,l): il y a 2l+1 orbitales de même énergie: les orbitales sont dites **dégénérées**.

Principe d'exclusion de Pauli : 2 électrons ne peuvent pas être dans le même état quantique.

Conséquence : une orbitale atomique (n, l, m_l) ne peut contenir que 2 électrons de nombre quantique de spins opposés.

- I = 0 : 1 seule orbitale de type s. Elle contient au maximum 2 électrons.
- I = 1:3 orbitales de type p. Elle contient au maximum 6 électrons.
- I = 2 : 5 orbitales de type d. Elle contient au maximum 10 électrons.
- I = 3 : 7 orbitales de type f. Elle contient au maximum 14 électrons.

Règle de Hund: Lorsque plusieurs électrons occupent des orbitales atomiques dégénérées d'une même sous-couche, la configuration la plus stable est obtenue lorsque le nombre d'électrons ayant des spins parallèles est maximal.

```
\uparrow \uparrow plus stable que \uparrow \downarrow \uparrow et que \uparrow \downarrow \uparrow
```

Exemple: Iridium $_{77}$ Ir: $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $4s^2$ $3d^{10}$ $4p^6$ $5s^2$ $4d^{10}$ $5p^6$ $6s^2$ $4f^{14}$ $5d^7$

 $5d^7: \uparrow\downarrow\uparrow\downarrow\uparrow$ \uparrow \uparrow

<u>Electrons de valence</u> = électrons de la couche de n le plus grand, on rajoute ceux d'une sous couche d'1 couche inférieure si elle est partiellement remplie. (cas de l'iridium : $6s^2$ $5d^7$, 9 électrons de valence)

Ils sont responsables des propriétés chimiques de l'atome.

<u>Configuration d'un ion</u>: pour établir la configuration d'un anion, on respecte les règles énoncées ci-dessus, pour un cation on écrit celle de l'atome neutre puis on élève les électrons de la couche de n le plus grand.